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Dissecting EEG-Language Models:
Token Granularity, Model Size, and Cross-Site Generalization
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Abstract
We investigate how token granularity and model
size affect EEG-language model performance in
both in-distribution and cross-site scenarios. We
pretrain a 1D ConvNeXt tokenizer (Weaver tok-
enizer) and use it to adapt Qwen3 language mod-
els (Weaver model) with continual pretraining
on the Big EEG (BEEG) dataset, the largest cor-
pus of EEG, iEEG, and MEG data to date. Fine-
tuning and evaluating on seizure detection and
forecasting, we find that optimal scaling depends
heavily on the task and whether evaluation is in-
distribution. For seizure detection, finer tokeniza-
tion consistently improves performance. On CHB-
MIT and Siena, our models achieve balanced ac-
curacy comparable to or exceeding state-of-the-
art EEG foundation models. In contrast, cross-
site seizure forecasting benefits significantly from
coarser tokenization, challenging the assumption
that higher fidelity is always better. While increas-
ing language model size improves in-distribution
detection, it offers no benefit for cross-site gener-
alization. These results establish token granularity
as a critical, task-dependent scaling dimension for
clinical EEG models.

1. Introduction
Electroencephalography (EEG) is a non-invasive method
for monitoring brain activity, and has become an increas-
ingly important tool in real-world clinical settings for the
monitoring and diagnosis of various neurological disorders
(Schomer & Lopes da Silva, 2018). However, manual re-
view of EEG signals can take away precious time and re-
sources that can be otherwise spent on improving patient
care. Reliable and automated assistive EEG signal analysis
tools therefore have the potential to improve patient care
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and reduce physician workload (Smith, 2005).

Cross-site generalization is a blocker to deploying auto-
mated EEG analysis tools in clinical practice. Models
trained at one hospital often show strong degradation in
performance when applied to another hospital due to differ-
ences in data collection, such as acquisition equipment, pa-
tient demographics, and recording protocols. This is known
as distribution shift, and it is one of the primary reasons that
promising deep learning-based EEG analysis systems have
not achieved widespread clinical adoption (Kostas et al.,
2021; Roy et al., 2019).

Foundation models pretrained on diverse data have shown
improved robustness to distribution shift in other domains,
such as computer vision, medical imaging and speech recog-
nition (Radford et al., 2022; Moor et al., 2023; Kirillov
et al., 2023). A growing body of work interfaces pretrained
language models with non-text modalities through discrete
tokenization, including audio (Défossez et al., 2024) and
images (Team, 2024), to produce a strong foundation model.

Previous works have explored this strategy in EEG modeling
domain. NeuroLM (Jiang et al., 2024) trains a decoder-only
language model with a text-aligned tokenizer. NeuroCog-
iter (Cong, 2025) uses a similar strategy, while adopting a
more sophisticated multi-stream causal pretraining strategy.
Both works incorporate text alignment steps for learning the
tokenizer.

However, these works fix tokenization granularity early
and focus optimization on the downstream language model,
leaving the interaction between tokenizer design and model
scaling unexplored. We ask: how do tokenization granu-
larity and language model size jointly affect downstream
performance, and do gains achieved in-distribution transfer
to cross-site generalization?

We address this gap through a controlled study using an
intentionally transparent design: a 1D ConvNeXt tokenizer
trained only with MSE loss, paired with pretrained Qwen3
language models adapted through standard continual pre-
training. This transparency lets us isolate the effects of tok-
enization granularity and model size on both in-distribution
and cross-site performance. Concretely, we train a 1D
ConvNeXt-based tokenizer with a finite scalar quantiza-
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Figure 1. Overview of our framework (Weaver). We construct the BEEG pretraining corpus by combining the Harvard EEG dataset with
EEG, iEEG, and MEG recordings from OpenNeuro. The Weaver Tokenizer (a 1D ConvNeXt encoder-decoder with FSQ bottleneck)
converts multi-channel EEG clips into discrete tokens, which are serialized with metadata and fed to a Qwen3 language model for
continual pretraining via next-token prediction. We finetune the resulting Weaver model on seizure detection and forecasting tasks using
a question–signal–answer format, then evaluate under in-distribution and leave-one-site-out settings.

tion (FSQ) bottleneck at three temporal granularities (32,
64, and 128 EEG samples). We continually pretrain Qwen3
base models (0.6B, 1.7B, and 4B parameters) for next token
prediction leveraging 50 billion tokens on a large corpus
(named BEEG) combining the Harvard EEG dataset (Za-
far et al., 2025) and EEG, iEEG, MEG recordings from
OpenNeuro. After continual pretraining, we finetune each
language model on seizure detection and forecasting tasks
by providing prompts and answers to the model using three
clinical datasets: CHB-MIT (Guttag, 2010; Shoeb, 2009),
Siena (Detti, 2020; Detti et al., 2020), and TUSZ (Shah
et al., 2018). See Fig. 1 for the overall training pipeline.

To ensure that our conclusions about scaling trends are valid,
we also compare our model’s seizure detection performance
against state of the art EEG models. We select the follow-
ing state of the art EEG models as our baselines. BIOT
(Yang et al., 2023) uses a transformer with full attention
between EEG patches and masked reconstruction pretrain-
ing. LaBraM (Jiang et al., 2023) learns a tokenizer to pro-
duce discretized maksed reconstruction targets for pretrain-
ing a full attention transformer model. On the other hand,
CSBrain (Zhou et al., 2025) utilizes a novel cross-scale
attention mechanism and structured sparsity to avoid full at-
tention between all patches. CBraMod (Wang et al., 2024)
also uses a factorized attention approach (termed “criss-
cross” attention in the paper) to decouple the dense attention
pattern. GT-STAFG (Nafea & Ismail, 2025) on the other
hand, uses a graph transformer (Shehzad et al., 2026) to
process the spatio-temporal relations between EEG signal.

We evaluate under two regimes: (i) in-distribution, where

training and test subjects come from the same sites, and (ii)
leave-one-site-out, where models are trained on two sites
and tested on the held-out third site. Our main findings are:

• Detection scaling: Finer tokenization consistently im-
proves both in-distribution and cross-site seizure de-
tection accuracy. In contrast, scaling model size only
improves in-distribution performance. Larger mod-
els show no benefit, and sometimes degradation, on
held-out sites.

• Forecasting scaling: Seizure forecasting shows a
distinct pattern: in-distribution performance exhibits
no reliable scaling trends with either tokenization or
model size, while cross-site generalization benefits
from coarser tokenization. This contrast suggests that
detection and forecasting rely on different temporal
scales of EEG features.

• Representation analysis: To understand these scaling
differences, we analyze learned representations. De-
spite flattening multi-channel EEG into a 1D token
sequence, representations remain robust to sensor per-
mutation, with finer tokenization maintaining higher in-
variance. Fine-grained tokenization also produces dis-
proportionately large weight updates in mid-network
layers. This suggests finer tokenization learns distinct
features from coarser ones.

• High-performance seizure detection: Weaver
achieves seizure detection balanced accuracy compara-
ble to or exceeding current state-of-the-art EEG foun-
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dation models on CHB-MIT and Siena datasets, though
we note differences in evaluation protocols.

To support reproducibility and future research, we release:

• BEEG: code for building the largest electrophysiology
pretraining corpus to date (EEG, iEEG, MEG).

• BEEGBench: a package for creating reproducible
EEG-language datasets for supervised finetuning
(SFT).

• Weaver model weights: Weaver Tokenizer check-
points at three granularities, Weaver continual-
pretrained EEG-language models up to 4B parameters.

2. Methods
2.1. BEEG: Continual pretraining dataset

For the continual pretraining of the language model, we
draw data from two large open datasets. For the Harvard
EEG dataset (Zafar et al., 2025; Sun et al., 2025), to ensure
high data quality, we only keep recordings with duration
longer than 1 minute. The remaining data are split into
train and validation split based on the patient ID, with data
from 4 patients chosen randomly as the validation set. Data
from remaining patients are used as the training set. Each
recording is further split into non-overlapping clips of 10-30
second.

We further leverage all the EEG, iEEG, and MEG data from
the OpenNeuro platform (Markiewicz et al., 2021). Since
OpenNeuro data consists of multiple individual datasets, we
select one subject from each sub-dataset to form the valida-
tion set. The remaining subjects are used as the training set.
We split each recording into clips of 5-10 seconds.

As will be detailed in section 2.5, we flatten the signals from
all electrodes in a clip into a 1D sequence consisting of
tokens from all electrodes for the language model to process.
Since the recordings from OpenNeuro usually have a larger
electrode count, in order to maintain a similar total sequence
length (in terms of the number of tokens), we elect to use
shorter clips.

The resulting dataset, to be called the Big EEG (BEEG)
dataset, consists of clips totaling approximately 2.75 million
hours (Table 1). It is the largest and most diverse electro-
physiology recording dataset to date. We will release the
preprocessing script for generating this dataset from the
Harvard and OpenNeuro datasets.

2.2. Evaluation datasets

The evaluation datasets for seizure detection and forecasting
are collected from sites strictly outside of BEEG pretraining

Table 1. BEEG dataset composition. Duration is reported in hours;
channel statistics are per-recording.

DURATION NUM CHANNELS
DATASET (HOURS) MEAN STD

HARVARD EEG 2,710,349 32.0 9.3
OPENNEURO EEG 38,919 56.6 58.1
OPENNEURO IEEG 3,247 107.8 42.6
OPENNEURO MEG 809 281.2 66.5

TOTAL 2,753,324 — —

dataset to prevent data leakage. For each evaluation dataset,
we randomly select 20% of the subjects as test subjects, and
10% of all subjects as validation subjects. The remaining
subjects are used as the training set. Each recording is split
into 5-15 second clips. In order to make evaluation result
analysis easier, we apply a balanced sampling strategy that
ensures each class (with and without seizure) is represented
roughly equally in the training, validation, and test sets.
Preprocessing of data is done according to section 2.3.

For seizure forecasting, to produce positive samples (seizure
forecasting with different future horizons [T1, T2]), for each
EEG recording in an evaluation dataset, we identify loca-
tions with seizures based on seizure annotation, and sample
a clip of 5-10 seconds long that is within the T2 to T1 min-
utes window before the seizure onset. We also randomly
select non-seizure clips which do not have seizures within
the next T1 to T2 duration as negative samples. We exam-
ine 5 prediction horizons, with T1 = 0, 10, 20, 30, 40, 50
and T2 = T1 + 10. Preprocessing is identical as seizure
detection.

Following the aforementioned process, we produce 50,000
training clips for seizure detection from each site, and
10,000 training clips for seizure forecasting from each site
across all clip durations. For testing, each site generates
additional 1,000 clips for seizure detection with durations
of 5s, 10s, and 15s, respectively, or 3,000 testing clips in
total. Similarly, we generate 3000 testing clips of different
durations for seizure forcasting.

2.3. EEG data preprocessing

All EEG data are first high-pass filtered at 0.5 Hz to detrend,
and then notch filtered at 50 Hz and 60 Hz to remove power
line noise. Note that we apply both filters to unify the
EEG data from different sites. We then apply channel-wise
z-score normalization to standardize the amplitude of the
EEG signal clips, with the mean and std derived from the
clip itself.
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Figure 2. Weaver Tokenizer architecture. A single-channel EEG signal passes through wavelet downsampling, a ConvNeXt encoder,
FSQ quantization, and radix encoding to produce discrete tokens. Details of each component are provided in 2.4.

2.4. Weaver Tokenizer

Since different montages for EEG exist, we design the
Weaver Tokenizer to process the signal over a token du-
ration from a single EEG channel at a time, thus deferring
the duty of fusing information from all electrodes together
to the latter language model. The weaver tokenizer converts
single channel EEG signal into sequence of tokens. We
provide an overview in figure 2.

To keep the tokenizer simple and efficient, the Weaver To-
kenizer consists of an encoder, a finite scalar quantization
(FSQ) bottleneck (Mentzer et al., 2023), and a decoder. Both
the encoder and the decoder are built by stacking 1D Con-
vNeXt (Woo et al., 2023) blocks. The downsampling and
upsampling are performed by an L-level wavelet-inspired
transform from the stable audio tools library (Stability AI &
Contributors) that achieves 2L× temporal compression us-
ing invertible biorthogonal wavelets (details in Appendix C).
The FSQ bottleneck maps the input to a fixed codebook of
size 65536 (216). The whole network is trained with mean
squared error (MSE) between the input and reconstructed
signal, and a straight-through-estimator (STE) is used to
ensure differentiability of the discrete FSQ.

The tokenization process for a single EEG channel pro-
ceeds as follows: the raw signal is first downsampled by the
wavelet module to reduce temporal resolution, then passed
through the ConvNeXt encoder to produce a latent repre-
sentation of shape T ×H , where T is the compressed time
dimension and H is the latent dimension. FSQ quantizes
each of the H latent dimensions independently into discrete
levels. Since this produces multiple quantized values per
timestep, we apply radix encoding to combine them into
a single integer token per timestep: given quantized val-
ues (q1, . . . , qH) with qi ∈ {0, . . . , ℓi − 1} for level counts
(ℓ1, . . . , ℓH), the token is

∑H
i=1 qi

∏i−1
j=1 ℓj , yielding a vo-

cabulary of size
∏H

i=1 ℓi = 65536. Thus, each channel
yields T tokens from an input window, with each token
drawn from a vocabulary of 65536 possible values.

The tokenizer is trained on a uniform mixture of iEEG,
EEG, and MEG data from our BEEG pretraining corpus,
although in this work we only explored EEG-based tasks.

For determining the optimal number of layers and hidden
dimensions, we performed a hyperparameter search using
NSGA-II multi-objective optimization (Deb et al., 2002)
provided by the Optuna library (Akiba et al., 2019). We
optimize the following two objectives: (1) the reconstruction
loss, and (2) the encoding speed. That is, we aim to find
the tokenizer that reconstructs the signal with minimal MSE
while maintaining fast encoding speed. The search space we
explored is detailed in appendix A and we list the optimal
hyperparameters found in B. Each hyperparameter search is
given a fixed time budget of 5 days on a single GPU. The
tokenizer for each token length is fixed once trained and not
finetuned during either continual pretraining or finetuning
stage.

2.5. Weaver: Language model continual pretraining

We use the Qwen3 model family (Yang et al., 2025) as our
base language model. We continually pretrain the 0.6B,
1.7B, and 4B base models to produce Weaver models.

To feed EEG signals to the language model, we serialize
each multi-channel clip into a 1D token sequence. The
sequence begins with a metadata header containing the
sampling rate, number of sensors, data type (EEG, iEEG,
or MEG), and an ordered list of sensor names. Follow-
ing the header, we emit a <|start of signal|> token,
then flatten the tokenized signal in time-major order: for
each timestep, we concatenate the tokens from all sensors
and append a <|timestep|> delimiter before advanc-
ing to the next timestep. The sequence concludes with an
<|end of signal|> token. An example serialization is
shown below:

Signal metadata:
Sampling rate: 512.0 Hz
Number of sensors: 16
Datatype: eeg
Sensor names: Fpz, T8, C3, ..., F7
<|start_of_signal|><|e34936|><|e296|>...
<|timestep|><|e110|><|e456|>...
<|end_of_signal|>

The embeddings for all EEG related special tokens are ini-
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tialized with a normal distribution of mean=0, std=0.022
and updated during the continual pretraining, along with the
original text embeddings and other model parameters.

Continual pretraining uses lr=10−4, global batch size=512,
max sequence length of 2000 tokens, and we train for 50
billion tokens in total. We clip the gradient norm to 1.0 to
prevent gradient explosion, and apply a 500 step learning
rate warmup from 0, and a cosine learning rate schedule
that decays to 1e-5. To preserve the text capability of the
language model, we interleave EEG with text data from
DCLM (Li et al., 2024) in a 1:1 ratio throughout continual
pretraining.

2.6. Weaver-SFT: Downstream tasks finetuning

We treat the seizure detection and seizure forecasting tasks
(under different prediction horizons) as the next-token-
prediction objective on the answer tokens, and finetune the
Weaver models jointly for both tasks to produce Weaver-
SFT. Each training example follows a question–signal–
answer format: we first present a text question (e.g., “What
clinical event is observed in this clip?”), followed by the
serialized EEG clip as described above, and finally the tar-
get answer (e.g., “seizure” or “background”). The model is
trained to predict only the answer tokens given the preceding
context. The full prompts used for finetuning are detailed
in appendix E. We use a global batch size of 8 with max
sequence length of 16384 tokens with sequence packing
to finetune the language model weight, while keeping the
tokenizer frozen. All finetuning uses 1000 gradient update
steps. We run 10 rounds of hyperparameter searches for each
model to search for the optimal learning rate and weight
decay. The hyper-parameter search space for finetuning is
detailed in appendix D.

During evaluations, we simplified the forecasting task into a
binary classification problem by pooling outcomes: seizure
within 30 minutes vs. no seizure within 30 minutes (com-
bining later seizures and background).

3. Results
More granular tokenization shows better reconstruction
performance across frequency bands We first evaluate
the reconstruction error of the tokenizer in different fre-
quency bands, shown in Figure 3. It shows that 32 sam-
ples/token provides the lowest reconstruction error through-
out the frequency range.

In-distribution effects of model settings We quantify
in-distribution performance using binomial generalized es-
timating equations (GEE) to regress trial-level correctness
on model size, token granularity, pretraining steps, and clip
duration (see Tables 3 and 4 in Appendix F for more de-

0 20 40 60 80 100
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0.004
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256

Figure 3. Reconstruction error for different frequency bands for
weaver tokenizers with different granularities. Lower is better.

tails). The results are summarized in Figure 4. We report
odds ratios (OR), which quantify how the odds of a cor-
rect prediction change with each predictor: an OR of 1.02
for a variable means a one-unit increase in that variable is
associated with 2% higher odds of correctness, while an
OR below 1 indicates lower odds. For log-transformed pre-
dictors (model size, samples/token, clip duration), the OR
represents the effect of doubling that variable.

0.9 1.0 1.1
Odds ratio for correctness

LM params (per 2x)

Samples/token (per 2x)

CPT steps (per +1k)

Duration (per 2x) Detection
Forecasting

Figure 4. How input duration, continual pretraining step, tokenizer
granularity, and language model size affect in-distribution task
performances, measured by average odds ratio. Odds ratio > 1
indicates an increase in correct prediction rate, and < 1 indicates
a decrease.

Seizure detection Seizure detection (N=311,385) shows
clear benefits from scaling. Both larger model size
(p=0.001; ≈ 1.6% gain per doubling) and finer token
granularity (p=0.001; ≈ 2.1% gain per halving samples-
per-token) significantly improve performance, with no sig-
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nificant difference in their effect magnitudes (Wald test
p=0.58). Continual pretraining also yields consistent gains
(p<10−5; ≈ 0.5% per 1k steps), while clip duration shows
no significant effect (p=0.328).

Seizure forecasting In contrast, seizure forecasting
(N=314,940) exhibits no reliable scaling trends. Neither
model size (p=0.614), token granularity (p=0.711), pre-
training steps (p=0.312), nor clip duration (p=0.976) show
significant associations with correctness, suggesting a funda-
mentally different scaling behavior compared to detection.

Cross-site effects of model settings We evaluate cross-
site generalization using a leave-one-site-out protocol, fit-
ting a binomial GEE (Figure 5; details in Tables 5 and 6 in
Appendix F).

0.8 1.0 1.2 1.4
Odds ratio for correctness

LM params (per 2x)

Samples/token (per 2x)

Duration (per 2x)

Detection
Forecasting

Figure 5. How input duration, continual pretraining step, tokenizer
granularity, and model size affect cross-site task performances of
variants of Weaver-SFT, measured by average odds ratio. Odds
ratio > 1 indicates an increase in correct prediction rate, and < 1
indicates a decrease.

Seizure detection For cross-site seizure detection
(N=62,277), tokenizer granularity remains the only signif-
icant predictor: more granular tokenization significantly
improves performance (p=0.005; ≈ 3.6% gain per halving
samples-per-token). Notably, scaling language model size
does not improve cross-site accuracy (p=0.415), suggesting
that larger models do not necessarily generalize better to
unseen hospitals. The clip duration was also not significant
(p=0.809).

Seizure forecasting Cross-site seizure forecasting
(N=62,988) reveals a reversal of the granularity trend:
coarser representations significantly improve performance
(p=0.002; ≈ 5.7% gain per doubling samples-per-token).

Neither model size (p=0.863) nor clip duration (p=0.517)
showed significant effects.

Model representation is robust to sensor permutation
One concern with flattening EEG tokens to a 1D se-
quence is that the order in which sensors are flattened may
cause the model to produce representations that are highly
permutation-dependent. We evaluate the degree to which
the models are permutation-invariant by shuffling the order
of sensors in the input and measuring similarity to a proto-
type representation. Specifically, for each EEG sample, we
compute a prototype as the mean embedding across multi-
ple random sensor orderings. We then measure permutation
robustness as the average cosine similarity between each
permuted sample’s representation and this prototype; high
similarity indicates the model produces consistent represen-
tations regardless of sensor order. The results are shown
in figure 6. It shows that for all token granularities, the
correlation between permuted and unpermuted represen-
tations is high (all ρ>0.999), indicating that although in
principle the order of sensors in the flattened sequence may
affect the model’s output, the effect is minimal in practice.
Specifically, the more granular tokenizers, 32 samples/token
and 64, show a consistently high permutation invariance
throughout the continual pretraining, whereas the coarser
128 samples/token tokenizer shows a gradual decline in per-
mutation invariance as the model is trained for more steps.

0 10000 20000 30000 40000
Continual pretraining step

0.9993

0.9996

1.0000

M
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Figure 6. Permutation variance of Weaver-base-0.6B of dif-
ferent token granularity as measured by mean correlation between
mean-pooled representations of samples with permuted sensor or-
der. Higher is more invariant.

Fine-grained tokenization leads to larger mid-network
layer updates Next, we would like to understand whether
different tokenization granularities would show different
learning dynamics. We evaluate the relative change in at-
tention weights in each layer of the 0.6B language model
after continual pretraining and plot the results in figure 7.
It shows that for layers 0-10 and layers 20-28, the three
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types of tokenization show qualitatively similar patterns.
However, for the finest tokenization, 32 samples/token, a
prominent difference is visible from layer 10-20. Specifi-
cally, the attention weights from layer 10-20 show a larger
relative change than the other two tokenization schemes.
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Figure 7. Relative weight change of attention weights in each layer
of the 0.6B model after continual pretraining (Weaver-Base)
compared to the initial base weights (Qwen).

Weaver achieves comparable or better seizure detection
performance than state-of-the-art EEG foundation mod-
els We compare our model with other state-of-the-art EEG
foundation models on the seizure detection task. The results
are shown in Table 2. Our Weaver models (under the best
parameter setting for in-distribution) achieve state-of-the-art
results on CHB-MIT and Siena datasets as measured by bal-
anced accuracy (BAcc), significantly outperforming existing
EEG foundation models performance as reported in the CS-
Brain benchmark. Specifically, our 4B parameter model
achieves 0.893 BAcc on CHB-MIT and our 1.7B model
achieves 0.839 BAcc on Siena, surpassing the previous bests
of 0.740 and 0.766 respectively. On TUSZ, Weaver demon-
strates competitive performance (0.765 BAcc), comparable
to strong baselines like BIOT (0.784), though trailing be-
hind specialized models like GT-STAFG (0.835). To the
best of our knowledge, there are no public reports of seizure
forecasting models that we can compare with.

4. Discussion
Our study investigates the scaling laws of EEG foundation
model size and tokenizer granularity, revealing a surprising
decoupling between representation fidelity and model ca-
pacity. We establish that token granularity, not model size,
is the primary driver of cross-site generalization for seizure
detection. This challenges the direct transfer of text-based
scaling laws to continuous modalities, suggesting that for
biological signals, a more nuanced scaling law might be in

Table 2. Cross-subject segment-level seizure detection balanced
accuracy (BAcc; higher is better. Best peformance bolded). Ours
use 15s clips, while CHB-MIT and Siena baselines follow the
CSBrain benchmark split (10s windows). TUSZ baselines follow
GT-STAFG’s evaluation setup.

Model CHB-MIT Siena TUSZ

Ours
Weaver (64k 64, 0.6B) 0.764 0.802 0.686
Weaver (64k 64, 1.7B) 0.741 0.839 0.689
Weaver (64k 64, 4B) 0.893 0.796 0.765

Baselines
CSBrain 0.726 0.766 –
CBraMod 0.740 0.732 –
LaBraM 0.708 0.708 –
BIOT 0.707 0.735 0.784
GT-STAFG – – 0.835

place. While larger models fit in-distribution data better,
they fail to generalize to new hospitals absent a high-fidelity
representation of the underlying signal dynamics.

In our cross-site generalization experiments, we find that
higher token granularity improves detection performance,
but it will decrease forecasting performance. We hypothe-
size that seizure detection requires features that are higher
frequency in nature, whereas forecasting might rely on
slower state dynamics that are difficult to capture from token
to token and thus benefit from using a coarser tokenizer.

Mid-network layer updates are particularly pronounced for
fine-grained tokenization, which is a unique pattern among
the different tokenization granularity we considered. This
could explain why scaling tokenization has a reliable effect
on downstream performance even when evaluated cross-site.
It causes more fundamental changes in model weights (and
in turn representations), whereas coarser tokenization might
be learning shallower features.

We note that our performance comparison with previous
state of the art models (Table 2) is not directly comparable,
as factors such as clip length and test set selection are dif-
ferent. Thus, they only serve to show that our model can
produce seizure detection performance comparable to pre-
vious state-of-the-art models, without claiming our model
is strictly better. This also highlights the importance of a
unified platform for evaluating EEG models.

Weaver still trails behind the state-of-the-art GT-STAFG
on TUSZ performance, despite having a significantly larger
model size (refer to Table 2). A plausible explanation of
this is that Weaver is trained on both seizure detection and
seizure forecasting tasks across 3 different datasets, while
GT-STAFG’s TUSZ performance is obtained by training
only on TUSZ for seizure detection. Future studies on how
model expressivity interacts with multi-task training might
help improve our understanding of this gap.
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We established that for in-distribution and cross-site seizure
detection, token granularity is an important factor that can
be used to improve model performance, and sometimes even
stronger than scaling the language model size. Similar con-
clusions for tasks such as image generation in computer
vision have been reached where a strong image tokenizer
can be used to match performance of continuous input mod-
els (Yu et al., 2023; You et al., 2025). One future direction
is to explore ways to learn strong representation in the tok-
enizer beyond token granularity. Methods such as masked
reconstruction (He et al., 2021; Fu et al., 2024) and self-
distillation has been very successful methods for learning
strong representations in computer vision (Siméoni et al.,
2025; Balestriero & LeCun, 2025), and EEG tokenizer learn-
ing can incorporate representation steps inspired by them.

Limitations Our study has several limitations that suggest
directions for future work:

1. We evaluate cross-site generalization using only three
clinical sites (CHB-MIT, Siena, TUSZ); the observed
scaling patterns may not hold across a more diverse
set of hospitals with greater variation in equipment,
protocols, and patient populations.

2. In order to study cross-site generalization, we limited
our scope to seizure detection and forecasting tasks. It
is possible that other downstream tasks may not benefit
from tokenization granularity scaling.

3. Although our tokenizer is trained on EEG, iEEG, and
MEG data, we only evaluate downstream performance
on scalp EEG tasks. How well our findings transfer to
intracranial or magnetoencephalography is unclear.

4. To keep the computation cost manageable, we fixed the
tokenizer vocabulary size to 64k. Future studies should
also explore how tokenizer vocabulary size interacts
with model size and task performance.

5. Our language model experiments use the Qwen3 fam-
ily exclusively. Other architectures, such as mixture of
experts (MoE) or model families may show different
scaling behaviors.

6. We do not explore hybrid or adaptive tokenization
strategies that could potentially balance the compet-
ing demands of detection and forecasting tasks.

Impact Statement
In this work, we showed that tokenization granularity can
be a more reliable way to scale the cross-site performance
of EEG analysis models. This provides rigorous evidence
that smaller, well-tokenized models can match the efficacy
of larger ones, which can significantly reduce the carbon

footprint of 24/7 seizure monitoring and democratizing ac-
cess to high-performance AI in resource-constrained clinical
settings.
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A. Tokenizer Hyperparameter Search Space
1. Hidden dimension of the encoder: {32, 64, 128, . . . , 512}

2. Hidden dimension of the decoder: {32, 64, 128, . . . , 512}

3. Number of ConvNeXt layers in the encoder: {1, . . . , 8}

4. Number of ConvNeXt layers in the decoder: {1, . . . , 8}

5. ConvNeXt block kernel size in the encoder: {3, 5, 7}

6. ConvNeXt block kernel size in the decoder: {3, 5, 7}

7. Pre-FSQ layernorm: {True, False}

8. MLP ratio in the encoder: uniform(1, 4)

9. MLP ratio in the decoder: uniform(1, 4)

10. Wavelet kernel type: {bior2.2, bior2.4, bior2.6, bior2.8, bior4.4, bior6.8}

11. Whether the wavelet kernel can be updated: {True, False}

12. How FSQ’s 64k codebook is decomposed: One example is (4, 4, 4, 4, 4, 4, 4, 4), which means the codebook is
decomposed into 8 groups, each with 4 levels.

B. Optimal hyperparameter for tokenizers
B.1. 32 Samples/token

{
"fsq_levels": [4, 4, 4, 4, 4, 8, 8],
"enc_dim": 416,
"enc_layers": 7,
"dec_dim": 192,
"dec_layers": 4,
"wavelet": "bior2.2",
"wavelet_levels": 5,
"enc_conv_kernel": 5,
"enc_expansion": 3.758881181594571,
"dec_conv_kernel": 5,
"dec_expansion": 2.3783779598934514,
"learnable_wavelet_kernel": true

}

B.2. 64 Samples/token

{
"levels": [4, 4, 4, 4, 4, 8, 8],
"enc_dim": 352,
"enc_layers": 4,
"dec_dim": 896,
"dec_layers": 3,
"wavelet": "bior4.4",
"wavelet_levels": 6,
"enc_conv_kernel": 3,
"enc_expansion": 1.7106679127356494,
"dec_conv_kernel": 7,
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"dec_expansion": 2.5110991475686695,
"pre_fsq_norm": true,
"learnable_wavelet_kernel": true

}

B.3. 128 samples/token

{
"levels": [4, 4, 4, 4, 4, 4, 4, 4],
"enc_dim": 256,
"enc_layers": 4,
"dec_dim": 512,
"dec_layers": 3,
"wavelet": "bior2.4",
"wavelet_levels": 7,
"enc_conv_kernel": 3,
"enc_expansion": 3.3398946112629897,
"dec_conv_kernel": 5,
"dec_expansion": 1.2843996614857947,
"pre_fsq_norm": true,
"learnable_wavelet_kernel": true

}

B.4. 256 samples/token

{
"levels": [4, 4, 4, 4, 4, 8, 8],
"enc_dim": 128,
"enc_layers": 1,
"dec_dim": 576,
"dec_layers": 4,
"wavelet": "bior4.4",
"wavelet_levels": 8,
"enc_conv_kernel": 3,
"enc_expansion": 2.832793423837936,
"dec_conv_kernel": 5,
"dec_expansion": 2.2663301595389265,
"pre_fsq_norm": false,
"learnable_wavelet_kernel": true

}

C. Wavelet Downsampling and Upsampling
We use an L-level wavelet-inspired transform for downsampling that achieves 2L× temporal compression. Let x ∈ RC×T

denote an input with C channels and T time steps. At each level ℓ, we partition x into the first channel x1 ∈ R1×T and
the remaining channels xrest ∈ R(C−1)×T . Let h̃ and g̃ denote the analysis low-pass and high-pass filters of a biorthogonal
wavelet. The transform computes:

a = (x1 ∗ h̃) ↓ 2, d = (x1 ∗ g̃) ↓ 2 (1)
x′

rest = reshape(xrest, [2(C − 1), T/2]) (2)

where ∗ denotes convolution and ↓ 2 denotes stride-2 subsampling. The first channel is decomposed into approximation
(a) and detail (d) coefficients via filtering, while the remaining channels are reshaped to halve the temporal dimension and
double the channel count without filtering. The output [a; d;x′

rest] ∈ R2C×T/2 becomes the input for the next level, with a
treated as x1. The process starts with the entire input signal as x1.
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For upsampling, the inverse transform reconstructs the signal using the synthesis filters h and g:

x1 = (a ↑ 2) ∗ h+ (d ↑ 2) ∗ g (3)
xrest = reshape(x′

rest, [(C − 1), T ]) (4)

where ↑ 2 denotes upsampling by zero-insertion. We start with the first two input channels as h and g, and merge them into
the first channel of the next stage, with remaining channels come from xrest. We then repeat on the first two channels in
the next stage. We use biorthogonal wavelets (e.g., bior4.4), which satisfy the perfect reconstruction property. The filter
coefficients are optionally learnable during training.

D. Finetuning Hyperparameter Search Space
1. Learning rate: loguniform(1e-6, 1e-4)

2. Weight decay: uniform(0, 0.3)

E. Finetuning Prompt
E.1. Seizure detection

prompt: "What clinical event (choose from: seizure, background) is observed in this clip?"

completion: "seizure" or "background"

E.2. Seizure forecasting

prompt: "Forecast the next seizure (choose from: {{unique_events_str | join(’, ’)}})."

completion: "{{event_name}}"

The possible events considered for finetuning in our work is: {“0-10 minute(s)”, “10 minute(s)-20 minute(s)”, “20 minute(s)-
30 minute(s)”, “30 minute(s)-40 minute(s)”, “40 minute(s)-50 minute(s)”, “50 minute(s)-1 hour(s)”, “≥ 1 hour(s) or no
future event”}.

F. Detailed Statistical Results
We fitted binomial Generalized Estimating Equations (GEE) with an exchangeable working correlation structure and robust
standard errors to assess the effects of model settings on correctness. The following tables present the detailed regression
results.

Table 3. In-distribution Seizure Detection GEE Results (N = 311, 385, 118 clusters (GEE treats each subject as a cluster to correct scoring
biases caused by correlation from multiple samples from the same subject.)). Log-transformed variables (Model size, Samples/token, clip
duration) represent the change in log-odds per doubling of the predictor.

PREDICTOR COEF. STD. ERR. z P > |z| [0.025 0.975]

INTERCEPT -0.9415 0.540 -1.744 0.081 -2.000 0.117
log2(PARAMETER COUNT) 0.0642 0.019 3.395 0.001 0.027 0.101
log2(SAMPLES/TOKEN) -0.0825 0.025 -3.367 0.001 -0.131 -0.034
CPT STEPS (K) 0.0180 0.003 5.853 0.000 0.012 0.024
log2(CLIP DURATION) 0.0439 0.045 0.978 0.328 -0.044 0.132

G. Model performance under different settings
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Table 4. In-distribution Seizure Forecasting GEE Results (N = 314, 940, 70 clusters).

PREDICTOR COEF. STD. ERR. z P > |z| [0.025 0.975]

INTERCEPT 0.2460 0.656 0.375 0.708 -1.040 1.532
log2(PARAMETER COUNT) 0.0112 0.022 0.504 0.614 -0.032 0.055
log2(SAMPLES/TOKEN) -0.0320 0.086 -0.371 0.711 -0.201 0.137
CPT STEPS (K) 0.0013 0.001 1.011 0.312 -0.001 0.004
log2(CLIP DURATION) -0.0007 0.022 -0.030 0.976 -0.044 0.043

Table 5. Cross-site Seizure Detection GEE Results (N = 62, 277, 118 clusters).

PREDICTOR COEF. STD. ERR. z P > |z| [0.025 0.975]

INTERCEPT 1.9279 1.102 1.750 0.080 -0.232 4.088
log2(PARAMETER COUNT) -0.0239 0.029 -0.816 0.415 -0.081 0.033
log2(SAMPLES/TOKEN) -0.1430 0.051 -2.789 0.005 -0.244 -0.043
log2(CLIP DURATION) 0.0069 0.029 0.241 0.809 -0.049 0.063

Table 6. Cross-site Seizure Forecasting GEE Results (N = 62, 988, 70 clusters).

PREDICTOR COEF. STD. ERR. z P > |z| [0.025 0.975]

INTERCEPT -1.1350 2.453 -0.463 0.644 -5.943 3.674
log2(PARAMETER COUNT) -0.0146 0.084 -0.173 0.863 -0.180 0.151
log2(SAMPLES/TOKEN) 0.2294 0.075 3.048 0.002 0.082 0.377
log2(CLIP DURATION) -0.0265 0.041 -0.648 0.517 -0.107 0.054
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Figure 8. In-distribution model performance for 32 samples/token
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Figure 9. In-distribution model performance for 64 samples/token
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Figure 10. In-distribution model performance for 128 samples/token
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Figure 11. Comparison of in-distribution and cross-dataset model performance for seizure detection
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Figure 12. Comparison of in-distribution and cross-dataset model performance for seizure forecasting
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