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Abstract— We present a non-invasive deep learning approach
for tracking cortical spreading depressions (CSDs) in scalp
electroencephalography (EEG) signals. Our method, which
we refer to as CSD spatially aware convolutional network
or CSD-SpArC, combines a convolutional neural network,
which extracts temporal features from the EEG signal of each
electrode, with a graph neural network, which exploits the
spatial structure of EEG signals on the scalp. Using high-
density EEG, this combination of networks misses no CSDs,
even the narrowest ones (informed by widths observed in
the real world), with less than 1.3% “post-stitching” false
alarm rate. We further use the network to track CSD wave
propagation by detecting when the recording at each electrode
is affected substantially by the propagating wave, quantifying
its “spatio-temporal tracking accuracy.” Tested on simulated
CSD waves on real head MRI models of 4 subjects, CSD-
SpArC achieves spatio-temporal tracking accuracies of up to
86.65%±0.60%, with an average false alarm rate less than
3.5%, using high-density EEG (256 electrodes). We show the
scalability of our trained network to different densities of EEG
and generalizability to different head models.

I. INTRODUCTION
This paper introduces a deep learning based framework

for non-invasive tracking of cortical spreading depressions
(CSDs) in the brain using simulated scalp electroencephalog-
raphy (EEG) signals. CSDs are waves of depression in the
spontaneous neural activity due to neurochemical changes in
the brain [1]. CSDs propagate slowly (1 to 8 mm/min) across
the cortical surface [2], and increasing evidence suggests that
they can cause secondary brain injuries after traumatic brain
injuries (TBIs), stroke, and hemorrhages [3]. Early detection
and continuous monitoring of CSD propagation is crucial to
reduce permanent damages to the brain tissue in patients
with brain injuries. Our consultations with clinicians and
experts (including Dr. Hartings [4]) suggest that what would
affect the clinical decision-making the most is being able to
detect CSDs reliably and infer how the wave is traveling.
Informed by this, the goal of this work is to track CSDs,
i.e., a) detect when there is a CSD episode (i.e., a single
wave of CSD in the brain), and b) track its propagation
in the sensor (i.e., EEG electrode) space to inform which
electrodes are most affected during each time interval. The
latter provides the clinician with a spatial sense of the wave.
We quantify the accuracy of detecting CSDs correctly at non-
overlapping time intervals using “spatio-temporal tracking
accuracy”. This detection accuracy is defined in Section II.

Prior work: There have been limited efforts in the past
decade to visually detect CSDs using scalp EEG (e.g., [2],
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[5]). Observing that this is labor intensive, and few people
across the world have this training, recently, we developed
techniques for automating EEG-based detection of CSDs,
an algorithm we call “WAVEFRONT,” that uses traditional
computer vision techniques and manual parameter adjust-
ment for offline detection [6]. Complementary to this work,
we also recently developed the first technique to localize
neural silences, which can be viewed as depressions in neural
activity that do not spread, using EEG recordings [7], [8].

In another work that classifies waves of activity (but
not spreading silences), Agrusa et al. presented a deep
convolutional neural network (CNN) for classifying the type
of gastric slow wave activity (as normal or abnormal wave)
in recorded data, using high-resolution non-invasive electro-
gastrogram (EGG; counterpart of EEG on the surface of the
abdomen) [9]. This algorithm uses a deep learning approach
for classifying the slowly propagating waves. However, it
cannot directly be used for CSD tracking, as defined above,
because: (i) as parts of CSD waves move in and out of the
brain sulci, in EEG recordings (which are sensitive largely
to shallow brain signals), they break into smaller parts called
“wavefronts” [6]. There are no such folds on the surface of
the stomach, and hence the technique in [9] is not designed to
detect such wavefronts; (ii) as the brain signal goes through
different layers of the head (namely, the cerebrospinal fluid,
the low-conductivity skull, and the scalp), the changing
conductivity adds to spatial low-pass filtering and blurring
of the signals. This blurring makes the localizing CSD
wavefronts challenging, especially the ones with a narrow
width of depression. The blurring is less challenging in EGG
recordings since there is no low-conductive layer similar to
the skull to cause additional blurring; (iii) the CNN network
of [9] outputs only a binary label for the whole recording to
classify the type of slow waves (i.e., normal or abnormal),
and it does so using projections of EGG activity on a regular
2D grid (see the definition of regular grids in [10]). Our goal,
as noted above, is to detect when the CSD propagates and
to track which EEG electrodes are most affected by CSDs
when they are present. The algorithm in [9], being designed
for regular 2D grids, does not easily extend to tracking in
the irregular 3D grid of EEG electrodes. (iv) Using kernels
with a fixed size in [9] makes the network unscalable (in a
sense defined below) to different densities of electrodes.

Our contributions: In this work, we obtain an automated,
generalizable algorithm for tracking CSDs using EEG. We
define two notions of generalizability. First, generalizability
to different patients (head models), which means that the
trained algorithm can be applied to new patients without
requiring to be re-trained. Second, generalizability to dif-
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ferent densities of the electrode grid, which means that the
algorithm trained on a specific electrode density can be
directly applied to other densities to track CSDs. We refer
to this generalizability as “scalability.”

Our algorithm combines CNNs and graph neural networks
(GNNs). CNNs are networks with local connections and
shared weights that extract localized multi-scale features and
construct highly expressive representations based on regular
grids of data (e.g., images, texts, and time series) [11], [12].
GNNs can be considered as a generalization of CNNs to
irregular grids (i.e., graph structures such as 3D meshes) [11],
[13]. EEG recording is temporally on a regular grid (1D
time series), where a CNN can be used to extract temporal
features for each electrode, and spatially on an irregular grid
(3D electrode mesh), where a GNN can be utilized.

In this work, we exploit the spatio-temporal information of
CSD waves in EEG signals using a deep learning framework.
It comprises: (i) a CNN to extract temporal features from
the preprocessed signals of each electrode; (ii) a GNN to
aggregate the temporal features and to exploit the spatial
structure of electrode locations on the scalp to extract spatial
information; and (iii) a multilayer perceptron (MLP) to
classify the presence or absence of CSD wavefronts at each
electrode location in small non-overlapping time intervals.
The scalability of our proposed method, which we refer
to as CSD spatially aware convolutional network or CSD-
SpArC, is tested through rigorous simulations on a wide
range of EEG electrode densities, from a low-density grid
of 20-electrode standard EEG caps, to higher densities with
up to 256 electrodes at 10-5 standard locations [14]. This
makes it possible to exploit the large amount of low-density
EEG data from the continuous recordings at intensive care
units, to train the CSD-SpArC for higher densities of EEG,
for which there are not many recorded CSD data. In addition,
we tested the generalizability of CSD-SpArC to 4 different
head models. This paves the way towards rapid detection of
CSDs for new patients as they arrive at hospitals.

II. METHOD

In this section, we explain the dataset generation process,
data labeling at each electrode, EEG preprocessing steps, and
details of the CSD-SpArC algorithm.

A. Dataset generation

We closely follow the steps in [6] to simulate the EEG
signals of CSD waves: (i) we preprocess (using FreeSurfer1

software) and extract 3D head models of 4 healthy in-
dividuals (OAS1 0001, 2, 4, and 5) from an open-source
magnetic resonance imaging (MRI) dataset (OASIS-12); (ii)
we simulate homogeneous annulus shaped CSD waves on a
real brain model, with the origin chosen randomly on the
cortical surface, while excluding the bottom of the brain
where there is no EEG electrode coverage; (iii) we generate
spontaneous brain activity based on the simplifying assump-
tions in [6], using a normal random process, and suppressed

1https://surfer.nmr.mgh.harvard.edu
2http://www.oasis-brains.org

brain activitiy at the locations and time points where CSD
wavefronts are to be located following the steps in [6]. The
amplitude of the suppressed signal at the simulated CSD
wave is ∼25% of the simulated normal brain signals. This
amplitude reduction is chosen based on the average of the
reported range of CSD depressions [17]; and, finally, (iv)
we estimate leadfield matrices (A) based on the extracted
head models using FieldTrip [18] and applying them to the
simulated brain signals to obtain scalp EEG signals.

B. Binary labeling of data at each electrode across time for
training

We train our algorithm using binary labels that denote
whether the signal of an electrode at a specific time point is
substantially affected by CSD waves. To extract these binary
labels, we look at the brain sources corresponding to the
30% largest elements in the ith row of the leadfield matrix
A, and, if at least at one of these sources at time t there is
a CSD depression, we assign label “1” to the signal of the
ith electrode at time t.

C. CSD-SpArC

1) EEG preprocessing: To improve the signal-to-noise-
ratio (SNR) of CSD depressions in the simulated EEG
signals, we adopt some of the preprocessing steps in [6] in-
cluding Laplacian spatial filtering (for high density EEG caps
with 128 and 256 electrodes), average power calculation,
envelope extraction (using a sliding time window of 40s),
and cross-correlation (with 2-minute negative pulse) for each
signal. In addition, we normalize the distribution of training,
validation, and test sets separately by mean subtraction and
standard deviation (SD) division. The preprocessed signal is
then downsampled (with temporal step size of 6s) before
being fed into our network. This downsampling reduces the
computational complexity of the algorithm, while maintain-
ing the required temporal information of the preprocessed
signal to track CSD waves. The preprocessed signal, after
the envelope extraction and cross-correlation, is concentrated
in a very low frequency band. In fact, the temporal width of
depression is in the order of minutes [2].

2) Training algorithm: We used a deep learning frame-
work including: (i) a CNN architecture called Multi Scale 1D
ResNet3 [15]; (ii) a GNN architecture called graph attention
network (GAT) [16]; and (iii) a MLP classifier.

Model: Fig. 1 provides an overview of our model. The
first part of our network is a Multi Scale 1D ResNet [15],
which is shared between all electrodes/nodes. This CNN
consists of multiple 1D convolution filters of various sizes
and residual connections (known to improve time series clas-
sification [15], [19]). CSD detection at time t is performed for
non-overlapping 5-min windows of the preprocessed signals
of EEG electrodes, where t is the midpoint of this window.
The binary labels of these midpoints are used as the CSD
ground truth for the corresponding time windows. These 5-
min windows from all electrodes are fed as a batch into the

3https://github.com/geekfeiw/Multi-Scale-1D-ResNet
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Fig. 1. Architecture overview of our CSD detection algorithm, shown for three input nodes/electrodes: a) temporal feature extraction of peprocessed
scalp EEG signals using a 1D Multi Scale ResNet netwrok [15], where “m,n-RB” is a residual block of n filters, each with length of m; b) aggregation
of extracted temporal features and exploiting the spatial information using a graph attention network (GAT) [16]; and c) classification of CSDs at each
node using a multilayer perceptron (MLP). The final output of our network is a spatio-temporal probability map of CSD. A threshold is then applied on
the output probability map during the inference time to extract the binary outputs of CSD (1) or no-CSD (0).

ResNet to extract temporal features for each electrode, which
are then input to GAT. The GAT model is constructed using
learnable attention layers to aggregate the incoming feature
vectors to a node, where the attention score calculations
are based on a k-nearest neighbor (k-NN) graph [16]. We
use a GAT with 6 attention heads, residual connections, 2-
4 layers, 500-600 hidden units, and LeakyReLU activation.
Our k-NN graph is a geometric graph that thresholds the
Euclidean distance between each pair of EEG electrodes
on the scalp. The classification for each node/electrode is
done using a MLP, followed by a softmax layer to generate
the spatio-temporal probability map of CSD. A threshold
of 0.75 is used to extract the binary outputs (1 for “CSD”
and 0 for “no CSD”) from the probability distribution of
CSD produced by our network. Finally, recognizing that
CSDs only substantially affect a few electrodes during each
time interval, we stitch together these binary values at each
electrode, using a sliding time window of 10 min (inspired
by a similar stitching process in [6], and assuming each CSD
spreads for at least 10 min). If there are at least 2 non-zero
values in the time window, then a “temporal binary label”
of 1 is assigned to the 10-min window. The consecutive 1’s
in the union of these temporal labels, across all electrodes,
is declared as a single CSD episode.

Training process: We train CSD-SpArC on 5,850 simu-
lated CSD episodes with varying length of 30-205 minutes,
different speeds of propagation (1 to 8mm/min, with step size
of 0.5mm/min), and different widths of wavefronts (0.5 to
6.5cm, with step size of 0.5cm), based on three different head
models (OAS1 0001, 2, and 4), where there are 10 simulated
episodes per each combination of width, speed, and head
models. For each of the different densities of EEG electrodes
(20, 32, 64, 128, and 256 at 10-5 standard locations [14]),
a model is trained. To prevent overfitting, dropout layers
are used on all layers, except CNN, with P = 0.5. The
optimal combination of hyperparameters is found through
validation using an open source hyperparameter optimization
framework called Optuna [20]. The hyperparameters in CSD-
SpArC are optimized over the following ranges: learning rate
in (10−5,10−3), k in k-NN graph for GAT in (dN/10e,dN/2e)
where N is the number of EEG electrodes, weight decay in
(5×10−4, 10−2), hidden layers of GAT in (2,4), and hidden

units in (400,700).
Implementation details: CSD simulations and prepro-

cessing are implemented in Matlab. The model is trained and
tested in PyTorch, using a batch size of 40 windows, with
total training iterations of 10 epochs with early stopping on
validation loss of patience of 2 epochs. To train our model,
we used a V100 NVIDIA GPU with 32GB memory.

Detection performance metrics: The “spatio-temporal
tracking accuracy”, defined for detecting CSDs at non-
overlapping time intervals, is the degree of agreement be-
tween the binary ground truth labels of CSD and the binary
outputs of our algorithm, measured using Cohen’s kappa
statistic (κ) [21]. We also provide the standard error of κ

(SE(κ)), defined in [22]. The average false positive rate
(FPR = FP

FP+T N , where FP is the number of false positives
and T N is the number of true negatives) is reported. FPR
is also reported based on the temporal binary labels (see
the stitching process in Section II), which is referred to as
“post-stitching” FPR in this paper.

III. RESULTS AND DISCUSSION

In this section, we report the performance of CSD-SpArC
for generalizability, scalability, and a range of CSD widths.

Performance on different ranges of CSD width: The
width of CSD wavefronts varies in different neurological
diseases and scenarios (e.g., 0.8 to 6.4cm in TBI [2]). We
test the performance of CSD-SpArC on different widths of
CSD wavefronts using different densities of EEG electrodes.
The trained model (see Section II-C.2 for more details) is
tested on a simulated dataset with 4 different ranges of
CSD widths ((0.5,2), (2,3.5), (3.5,5), and (5,6.5)cm with
0.5cm step size), with the speed range of 2 to 8mm/min
(with step size of 2mm/min) for each width range, across
three different head models (OAS1 0001, 2, and 4), and for
five different EEG densities (20 to 256 electrodes). Table II
summarizes the results of CSD detection for different widths
of wavefronts and different EEG densities. As expected,
the tracking accuracy increases as the number of EEG
electrodes increases and as the CSD waves become wider,
with the best accuracy of 86.65%±0.60% for detecting the
widest CSD waves ((5,6.5)cm) using the highest density EEG
(256 electrodes). Although non-invasive detection of CSD is
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TABLE I
SCALABILITY PERFORMANCE TO DIFFERENT ELECTRODE DENSITIES.

κ

± SE(κ)
Trained on

20 32 64 128 256

Te
st

ed
on

20 75.73%
± 3.99

77.01%
± 3.80

76.54%
± 3.87

75.22%
± 4.00

76.31%
± 3.72

32 75.33%
± 3.21

77.13%
± 3.03

77.06%
± 3.02

75.88%
± 3.15

77.01%
± 2.94

64 75.69%
± 2.25

77.20%
± 2.15

77.42%
± 2.14

77.28%
± 2.16

77.88%
± 2.09

128 75.08%
± 1.54

76.25%
± 1.54

76.54%
± 1.52

77.13%
± 1.74

76.91%
± 1.54

256 76.69%
± 1.10

78.41%
± 1.05

78.24%
± 1.06

78.63%
± 1.07

79.69%
± 1.02

TABLE II
DETECTION PERFORMANCE FOR DIFFERENT RANGES OF CSD WIDTH.

κ

± SE(κ)
Trained on

20 32 64 128 256

C
SD

w
id

th
(c

m
) 0.5 -

2
34.50%
± 21.87

40.52%
± 14.75

42.85%
± 10.23

47.71%
± 6.88

57.46%
± 4.10

2 -
3.5

67.24%
± 6.35

72.56%
± 4.34

72.65%
± 3.07

72.73%
± 2.26

75.62%
± 1.46

3.5 -
5

81.26%
± 3.00

82.40%
± 2.33

83.22%
± 1.63

83.25%
± 1.18

83.98%
± 0.81

5 -
6.5

84%
± 2.26

85.94%
± 1.73

85.37%
± 1.25

85.86%
± 0.88

86.65%
± 0.60

challenging, the narrowest CSD waves ((0.5,2)cm) can still
be detected using CSD-SpArC using the highest density EEG
(256 electrodes) with a tracking accuracy of 57.46%±4.10%
and average FPR of less than 1.43%. CSD-SpArC also
detects CSD waves as narrow as 2cm using only 20 EEG
electrodes with a tracking accuracy of 67.24%±6.35% and
average FPR of less than 6.4%. Additionally, high-density
EEG (256 electrodes) detects all CSD episodes, even the
narrowest ones, with less than 1.3% “post-stitching” FPR.
CSD-SpArC outperforms our earlier work [6] by requiring
lower density of EEG to detect and localize narrow CSDs.

Generalizability: To test the generalizability of CSD-
SpArC to new head models (unseen by the network), we
test the model, which is trained on three head models of
OAS1 0001, 2 and 4, on a simulated CSD dataset based
on the head model of OAS1 0005 with different widths of
wavefronts (0.5, 2, 5, and 6cm) and two different speeds
of propagation (2 and 4mm/min). CSD-SpArC successfully
detects and tracks CSD waves in this new head model
with greater than 75% tracking accuracy and less than 3%
false positive rate using 20 or more electrodes. CSD-SpArC
generalizes without any retraining and/or fine-tuning the
parameters in the model.

Scalability: Our model easily adapts to different densities
and placement of EEG electrodes (Section II-C.2). This
makes CSD-SpArC scalable to higher or lower densities of
EEG electrodes. We test the scalability performance of CSD-
SpArC as follows: we use the trained model on a specific
density of EEG (e.g., 20-electrodes), and test it on simulated
test dataset of other densities (e.g., 32, 64, 128, and 256 elec-
trodes). Each test set includes CSD episodes with different
widths (0.5, 2, 4, and 6cm) and speeds (1, 3, 5, 7mm/min),
for three different head models. Table I shows the results
of scalability tests, with the training EEG densities across

columns, and test densities across rows. The results confirm
the scalability of CSD-SpArC for any combination of train-
test electrode densities with an accuracy of 76.7%±1.1% and
FPR of less than 2.1% for a model which is trained on a
low-density EEG (with only 20 electrodes) and tested on a
high-density EEG (with 256 electrodes).

Limitations and future work: We only used an annular
suppression pattern of CSD. CSD-SpArC needs to be tested
on complex patterns, such as propagation on single gyrus,
and semi-planar wavefronts [6]. In addition, this method
algorithm needs to be tested on different levels of amplitude
suppression. Perhaps most importantly, CSD-SpArC needs
to be optimized and tested on real data from patients.
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